Belief Propagation in Conditional RBMs for Structured Prediction
نویسندگان
چکیده
Restricted Boltzmann machines (RBMs) and conditional RBMs (CRBMs) are popular models for a wide range of applications. In previous work, learning on such models has been dominated by contrastive divergence (CD) and its variants. Belief propagation (BP) algorithms are believed to be slow for structured prediction on conditional RBMs (e.g., Mnih et al. [2011]), and not as good as CD when applied in learning (e.g., Larochelle et al. [2012]). In this work, we present a matrix-based implementation of belief propagation algorithms on CRBMs, which is easily scalable to tens of thousands of visible and hidden units. We demonstrate that, in both maximum likelihood and maxmargin learning, training conditional RBMs with BP as the inference routine can provide significantly better results than current state-of-the-art CD methods on structured prediction problems. We also include practical guidelines on training CRBMs with BP, and some insights on the interaction of learning and inference algorithms for CRBMs.
منابع مشابه
Learning and Inference in Latent Variable Graphical Models
OF THE DISSERTATION Learning and Inference in Latent Variable Graphical Models By Wei Ping Doctor of Philosophy in Computer Science University of California, Irvine, 2016 Professor Alexander Ihler, Chair Probabilistic graphical models such as Markov random fields provide a powerful framework and tools for machine learning, especially for structured output learning. Latent variables naturally ex...
متن کاملDeep Learning and Structured Prediction for the Segmentation of Mass in Mammograms
In this paper, we explore the use of deep convolution and deep belief networks as potential functions in structured prediction models for the segmentation of breast masses from mammograms. In particular, the structured prediction models are estimated with loss minimization parameter learning algorithms, representing: a) conditional random field (CRF), and b) structured support vector machine (S...
متن کاملConditional Restricted Boltzmann Machines for Structured Output Prediction
Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training...
متن کاملEnd-to-end learning potentials for structured attribute prediction
We present a structured inference approach in deep neural networks for multiple attribute prediction. In attribute prediction, a common approach is to learn independent classifiers on top of a good feature representation. However, such classifiers assume conditional independence on features and do not explicitly consider the dependency between attributes in the inference process. We propose to ...
متن کاملExtending Expectation Propagation for Graphical Models
Graphical models have been widely used in many applications, ranging from human behavior recognition to wireless signal detection. However, efficient inference and learning techniques for graphical models are needed to handle complex models, such as hybrid Bayesian networks. This thesis proposes extensions of expectation propagation, a powerful generalization of loopy belief propagation, to dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017